Aerospace

NASA to explore 3D printed lunar structure possibilities with Redwire Regolith Print launch

NASA is launching a new set of scientific experiments to the International Space Station (ISS), including a study from mission-critical space systems specialist Redwire that will determine the feasibility of 3D printing regolith for the on-demand construction of lunar structures.

The Redwire Regolith Print (RRP) study will head to the ISS on Northrop Grumman’s Cygnus spacecraft, targeted for launch on August 10th just before 6pm EDT. At a media teleconference hosted by NASA in the lead-up to the launch, Redwire’s Chief Technology Officer Michael Snyder explained what the firm hopes to achieve with the project, and what it could mean for future space exploration missions.

“The Redwire Regolith Print project is a tech demo of on-orbit additive manufacturing using regolith simulating feedstock material,” he said. “This represents a critical step in developing sustainable manufacturing capabilities for lunar surfaces that will ultimately establish a permanent human presence off-earth by utilizing available resources with adaptive systems. So this is really exciting for the future and hopefully, something like this gets eventually deployed to the moon.”

The Redwire Regolith Print study

National space agencies like NASA are continuing to seek a permanent presence on the moon and Mars, and using raw resources available on-site to build structures and habitats could reduce how much material future missions need to bring from Earth. As a result, this could significantly reduce the launch mass and cost of future missions and provide a more sustainable method of constructing housing and other structures on planetary bodies.

Once installed on the ISS, the RRP project will seek to demonstrate the potential for 3D printing with regolith feedstock material in microgravity using the Made In Space additive manufacturing device currently housed aboard the station. Regolith is the loose rock and soil found on the surfaces of planetary bodies such as the Moon, and the study hopes to demonstrate the feasibility of 3D printing the material to construct on-demand habitats on future space exploration missions. 

During the project, Redwire will use a feedstock made up of metal oxides and a binder that simulates regolith to 3D print multiple plates that, once brought back to earth, will be formed to the exact specifications of the required test specimens. Printing the samples as plates will also enable Redwire to produce as many samples as possible for the destructive testing phase. The regolith-simulating samples will be printed using an extrusion-based 3D printing technique similar to fused deposition.

“For this demonstration, an initial set of three specimens will be produced on the ISS,” explained Snyder. “That will be done by installing newly developed manufacturing components into Redwire’s existing additive manufacturing facility. Once those components or specimens are returned, NASA will test the material properties of the prints by performing destructive tests.”

The Redwire Regolith Print facility suite, consisting of Redwire's Additive Manufacturing Facility, and the print heads, plates and lunar regolith simulant feedstock that will be launching to the International Space Station. Photo via Redwire.
The Redwire Regolith Print facility suite, consisting of Redwire’s Additive Manufacturing Facility, and the print heads, plates and lunar regolith simulant feedstock that will be launching to the International Space Station. Photo via Redwire.

The hardware for the Made In Space additive manufacturing device was developed in partnership with NASA’s Marshall Space Flight Center and was created to identify and test the methodology for regular manufacturing in the US on a lunar surface to support NASA’s Artemis program. A key phase of NASA’s Artemis plan is to create lunar infrastructures for future exploration missions to the surface, that will be critical to humanity’s sustainable presence on the moon and beyond, Snyder said. 

“The payload is practically a manufacturing head that is inserted into our existing additive manufacturing facility on the ISS,” he added. “Since 2016, we have produced over 200 tools for it so this is basically a new deposition head and a new deposition plate that we will be printing on. We’re really excited about this because it’s the first time testing a new manufacturing technique in microgravity.”

Redwire has been working with NASA’s Marshall Space Flight Center for some time on the project, having taken part in the first round of the 3D Printed Habitat Centennial Challenge. The multi-phase challenge was aimed to advance the construction technology needed to create sustainable housing solutions for Earth and beyond, and was the origin of Redwire’s regolith-simulating material. 

Once the 3D printed regolith samples are returned to Earth, they will be analyzed and compared with samples produced in a ground facility prior to launch. Comparing the samples will help Redwire to validate that the printing process works at levels of gravity lower than that on Earth.

“The capability has already been proven on Earth, but requires further validation in the space environment,” said Snyder. “Operating both on the ground and in microgravity will increase the competence in the process for use on planetary bodies with gravity fields, including the Moon and Mars. The regolith print demonstration will be the first-ever test of manufacturing regolith simulate feedstock in space.”

The RRP study will launch on Northrop Grumman’s 16th commercial resupply services mission on August 10th from NASA’s Wallops Flight Facility in Virginia. Other experiments and supplies also being launched to the ISS include engineered tissue to study muscle loss, slime mold, a flow boiling and condensation experiment, and thermal protection systems, among other things. 

A preflight view of the Redwire Regolith Print (RRP) facility suite launching aboard NG-16, including the RRP print heads, plates and lunar regolith simulant feedstock Photo via Redwire.
A preflight view of the Redwire Regolith Print (RRP) facility suite launching aboard NG-16, including the RRP print heads, plates and lunar regolith simulant feedstock Photo via Redwire.

3D printing for off-world structures

Additive manufacturing is garnering increasing interest from multiple national space agencies as they seek to establish a permanent presence on the moon.

For instance, Texas-based construction firm ICON has gained a NASA contract for the development of a full-scale prototype off-world 3D printer. As part of the project, the team is working on fabricating space-faring structures using only lunar regolith.

3D printing with lunar regolith in zero gravity has also been explored by scientists from the Technical University of Braunschweig and Laser Zentrum Hannover, in a project titled ‘MOONRISE’. The scientists devised a customized laser that, with further R&D, could form the basis of a flight-ready lunar rover enabling astronauts to create economical long-term structures on the moon.

Elsewhere, Russian space agency Roscosmos has confirmed its support for long-term missions by 3D printing structures made from on-site material, and China’s National Space Administration has revealed its own plans to 3D print a base on the Moon.

Redwire's Howie Schulman, project lead, packs the Redwire Regolith Print printing plate ahead of delivery to NASA for launch. Photo via Redwire.
Redwire’s Howie Schulman, project lead, packs the Redwire Regolith Print printing plate ahead of delivery to NASA for launch. Photo via Redwire.

Nominations for the 2021 3D Printing Industry Awards are now open, have your say who is leading the industry now.

Subscribe to the 3D Printing Industry newsletter for the latest news in additive manufacturing. You can also stay connected by following us on Twitter and liking us on Facebook.

Looking for a career in additive manufacturing? Visit 3D Printing Jobs for a selection of roles in the industry.

Subscribe to our YouTube channel for the latest 3D printing video shorts, reviews and webinar replays.

Featured image shows the Redwire Regolith Print facility suite, consisting of Redwire’s Additive Manufacturing Facility, and the print heads, plates and lunar regolith simulant feedstock that will be launching to the International Space Station. Photo via Redwire.