3DP Applications

Mcor’s 3D Printing Tech Dramatically Reduces Surgical Times

Time is critical when a patient is undergoing surgery. The longer the patient’s internal tissue is exposed, the greater the risk. When a patient can be quickly closed up and begin recovery, chances are greater for a healthy recovery. These concerns are on the minds of maxillofacial surgeons at the Cliniques Universitaires Saint Luc, Université catholique de Louvain (UCL) in Belgium, who often need to reconstruct bones in a patient’s skull, such as a jaw ravaged by cancer or an eye socket crushed in a car accident.

Mcor’s 3D printing technology, which produces highly accurate, paper models, has become central to the sugeons’ strategy for recouping hours from traditional surgical procedures. Working from the digitally scanned contours of patients’ bones, the surgeons are able to print out full-sized 3D physical models to use as surgical guides. Since the model is a facsimile of the patient’s actual physiology, surgeons can use it to precisely shape metal inserts that fit along a patient’s residual bone. Without 3D physical models to work from, surgeons would be forced to rely on time-consuming trial and error to shape the metal implants and risk potential tissue damage.

[nggallery id=62]

“With each procedure, we easily win an hour in the operating room, and that’s a major benefit for the patient,” says Professor Raphael Olszewski, a surgeon and head of the university’s oral and maxillofacial surgery research lab (OMFS Lab, UCL). “We open the patient up, slide in the device, check the fit, and start the patient’s recovery.”

The 3D physical skull and mandible models shown are printed on an Mcor Matrix paper-based 3D printer. To create a 3D model, Olszewski’s team takes a CT or cone-beam CT scan of the patient and uses Maxilim software to export the section of bone they are interested in. They quickly transform the 3D file into a printable, watertight solid and print the bone model with ease.

It should be noted that these doctors are not strangers to 3D printing, having used a ZPrinter (resin powder-based 3D printer) for five years. However, the transition to Mcor 3D printers has reduced model costs and eliminated extensive post-processing that employed toxic chemicals (cyanoacrylate). The chemicals required a special license to handle and a special room for the post-processing. Olszewksi’s team found the chemicals incompatible with education and healthcare.

“We went looking for an eco-friendly solution and found Mcor,” says Olszewski. Mcor 3D printers are the only ones that create models from paper (standard Letter/A4 sheets). When the sheets are cut and bound together, the model is tough, durable and stable – no infiltration is required. After use, models can be disposed of in the recycling bin for cradle-to-grave sustainability. Olszewki estimates that a model printed on a Matrix 3D printer costs about half that of the ZPrinter and about one-tenth that of Stereolithography. With Olszewski’s team making models every day, that’s a savings of more than €20,000 per year.

“The Mcor 3D printer gives us a really affordable 3D model that opens up a great many possibilities for 3D modelling in maxillofacial surgery,” says Olszewski. In addition to creating models of surgical patients, Olszewski’s team creates models for the lab. The team is constantly refining its processes so that surgical guide use is increasingly precise. One way the team does this is by CT scanning models and superimposing the images on CT scans of patients. This way, the team can gauge the accuracy of modelling and improve the success of the surgeries. The ease and affordability of producing 3D physical skull models is enabling Olszewski’s team to constantly expand the range of procedures that can be accelerated using 3D printed surgical guides.

Though powerful, the Mcor 3D printer is surprisingly intuitive, notes Olszewski, even for busy surgeons who need to constantly focus on their craft. The team has also discovered that Mcor models, though paper, can be sterilised. That means surgeons will soon be bringing them into the operating room. As 3D printing’s role quickly evolves, Olszewski sees 3D printing as a powerful, affordable and accessible alternative to highly expensive neuronavigation systems that ensure accuracy in surgery.

“There are many potential applications in medicine for Mcor’s affordable and eco-friendly process,” says Olszewski. “Look for 3D paper printing not only in surgery, but in medical equipment engineering and biomedical engineering. We’re really at the beginning.”

Source and Images: Mcor